陳文恺
發布時間:2024-03-12 浏覽次數:0
陳文恺 博士,副教授,碩士生導師
電子郵件:wenkaichen@hebtu.edu.cn
科研室:理科群7号樓B-404
歡迎對結構化學、物理化學、理論計算化學、光化學、機器學習、程序編寫等方面感興趣的同學報考本組化學專業、材料與化工專業的研究生!
學習經曆:
2013.09-2017.06 北京師範大學 理學學士
2017.09-2022.06 北京師範大學 理學博士
工作經曆:
2022.07-至今 韦德体育官方网站 曆任講師、副教授
主講課程:
《結構化學》、《計算化學實驗》
研究領域:
理論及計算光化學。具體的研究方向為:(1)基于低标度電子結構方法和機器學習技術的非絕熱動力學模拟方案;(2)分子體系和周期性體系光物理過程的理論研究;(3)基于大數據和機器學習探索催化劑與催化活性間的構效關系。
科研項目:
國家自然科學基金青年科學基金(22303025)
河北省自然科學基金青年科學基金(B2023205003)
河北省高等學校科學技術研究項目-青年基金項目(QN2023176)
韦德体育官方网站科技類博士基金(L2023B12)
代表性論著:
(1)Wen-Kai Chen, Xiang-Yang Liu, Wei-Hai Fang, Pavlo O. Dral, Ganglong Cui*;Deep Learning for Nonadiabatic Excited-State Dynamics, J. Phys. Chem. Lett.,2018, 9, 6702-6708.
(2)Wen-Kai Chen, Wei-Hai Fang, Ganglong Cui*; IntegratingMachine Learning with the Multilayer Energy-Based Fragment Method for ExcitedStates of Large Systems, J. Phys. Chem. Lett., 2019,10, 7836-7841.
(3)Wen-Kai Chen, Wei-Hai Fang, Ganglong Cui*; A Multi-LayerEnergy-Based Fragment Method for Excited States and Nonadiabatic Dynamics, Phys.Chem. Chem. Phys., 2019, 21, 22695-22699.
(4)Wen-Kai Chen, Yaolong Zhang, Bin Jiang, Wei-Hai Fang, Ganglong Cui*;Efficient Construction of Excited-State Hessian Matrices with Machine LearningAccelerated Multilayer Energy-Based Fragment Method, J. Phys. Chem. A, 2020,124, 5684-5695.
(5)Wen-Kai Chen, Wei-Hai Fang, Ganglong Cui*; ExtendingMulti-Layer Energy-Based Fragment Method for Excited-State Calculations ofLarge Covalently Bonded Fragment Systems, J. Chem. Phys., 2023,158, 044110.
(6)Wen-Kai Chen, Sheng-Rui Wang, Xiang-Yang Liu, Wei-Hai Fang, Ganglong Cui*;Nonadiabatic Derivative Couplings Calculated Using Information of PotentialEnergy Surfaces without Wavefunctions: Ab Initio and Machine LearningImplementations, Molecules, 2023, 28, 4222.
(7)Yanjiang Wang, Chang Zhao, Wen-Kai Chen*, Yanli Zeng*;Chalcogen Bond Catalysis with Telluronium Cations for Bromination Reaction:Importance of Electrostatic and Polarization Effects, Chem. Eur. J., 2023,29, e202302749.
(8) Wen-Kai Chen, Xiang-Yang Liu,Ganglong Cui*; Generalized Trajectory-Based Surface-Hopping (GTSH)Nonadiabatic Dynamics with Time-Dependent Density Functional Theory:Methodologies and Applications. In Time-Dependent Density Functional Theory;Jenny Stanford Publishing: New York, 2022; pp 199–250. (書籍章節)